S&A FY03 ANNUAL REVIEW MEETING

Fiber optic sensor for industrial process measurement and control

Peter De Barber Tom Jenkins

Project Overview

Project description

- SBIR: $\phi_1 \sim 1$ y feasibility study; $\phi_2 \sim 2$ y prototype development and testing effort; $\phi_3 \sim 1$ y real-world demo system

Objectives

- Design and build the system completed
- Calibrate and test the system in a laboratory completed
- Integrate the system into a practical combustor completed
- Demonstrate the system in real-world conditions

Overall goal

To produce a prototype Tunable Diode Laser Absorption
 Spectroscopy (TDLAS) instrument for practical use in combustion applications

Presentation Overview

Technical merit

Thermometry example

Approach

- Scanned wavelength absorption spectroscopy using near IR diode lasers
- Background
- Technical progress and outlook
- Phase II prototype tests
 - Combustion chemical vapor deposition (CCVD) torch
 - Staged low-NOx (SLN) combustor
 - Gel rocket motor rig
- Future work demo testing

Technical Merit

- Many industrial and manufacturing process sensors have limited accuracy in applications involving high temperatures and/or pressures because they require extractive sampling.
- Extractive sampling introduces the unwanted effects of alterations in temperature and chemical composition as well as slow response times.
- Sampling also frequently requires that costly maintenance schedules be put in place.
- A multichannel TDLAS affords a direct, rapid, and quantitative measure of the species concentration and temperature along a line in the probed region.
- Using fiber optics, the system is easily expanded to probe several locations simultaneously.
- Using NIR laser sources leverages "inexpensive" telecom technology and eliminates the need for cryogenic cooling.
- Passive physical probes cannot withstand the combustion environment (at least not for very long!)

Example

Thermometry

- Need: a non-intrusive high temperature sensor for industrial app's.
- Problem: combustion temperatures frequently top 2000 K/3200° F, exceeding thermocouple limits;
- Thermocouple shortcomings: intrusive, fragile, time lag, radiation error, conduction error,...

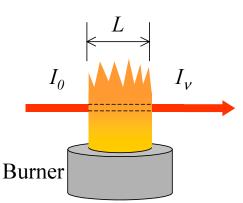
Thermocouple failing near 2000 K in methane - air flat flame burner

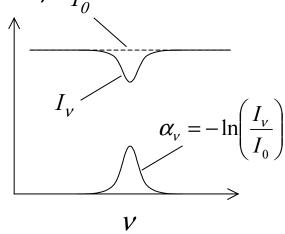
Solution: non-intrusive TDLAS targeting water vapor

Approach/background - mole fraction

Scanned wavelength absorption measurement

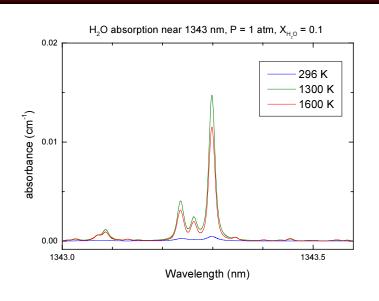
- 1. Direct absorbance
- 2. Wavelength modulation spectroscopy (WMS)


Beer-Lambert relation:

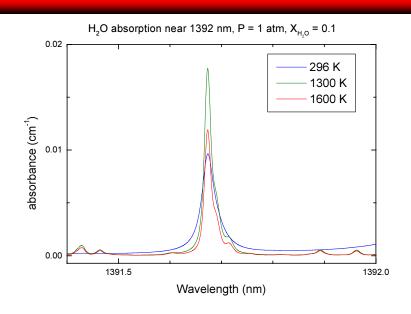

$$\frac{I_{\nu}}{I_0} = e^{-\alpha_{\nu}}$$

For line *j* of species *i*:

Absorbance =
$$\alpha_v = P_i X_i S_j \phi_j L$$


Where:
$$S_j = S_j(T)$$

 $\phi_j = \phi_j(v)$



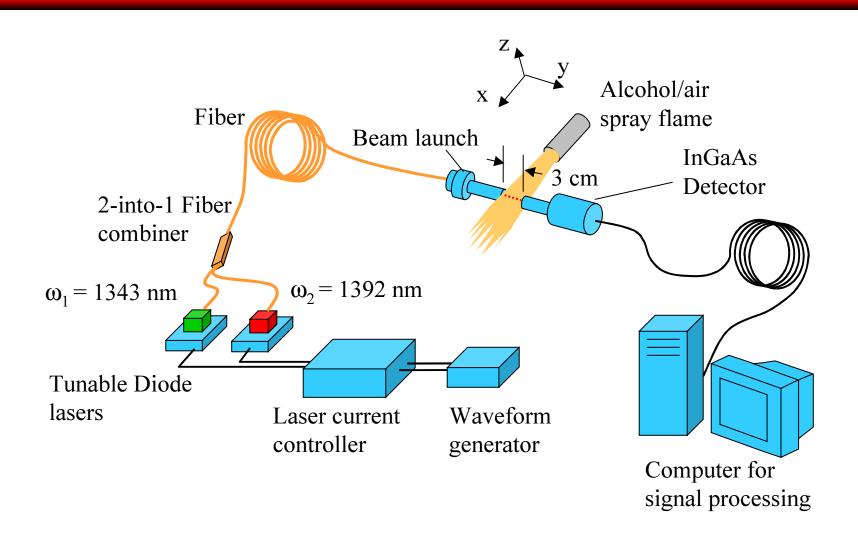
Measured
$$\alpha_{v,peak}$$
 $X_i = \frac{\alpha_{v,peak}}{PS_i \phi_i L}$

Approach/background - temperature

Ratio of peak absorbances:

$$R_{peak} = \frac{\left(\alpha_{v,1}\right)_{peak}}{\left(\alpha_{v,2}\right)_{peak}} = \frac{S_1(T_0)\phi_1}{S_2(T_0)\phi_2} \exp\left[-\frac{hc}{k}(E_1"-E_2")\left(\frac{1}{T} - \frac{1}{T_0}\right)\right]$$

Measured R_{peak} is sensitive primarily to T only.

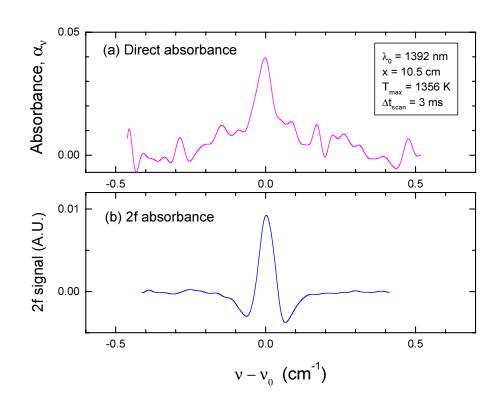

Major progress/accomplishments to date

- Modeled and validated high temperature spectra
- Built several prototypes
- Tested WMS and direct absorbance strategies
- Identified new temperature measurement strategies
- Demonstrated temperature/mole fraction sensing in turbulent combustion
- Compared measurements with thermocouples/calculations
- Demonstrated simultaneous multiple temperature sensing locations
- Demonstrated simultaneous temperature/multiple species mole fraction measurement
- Made preliminary comparison to chemiluminescence data

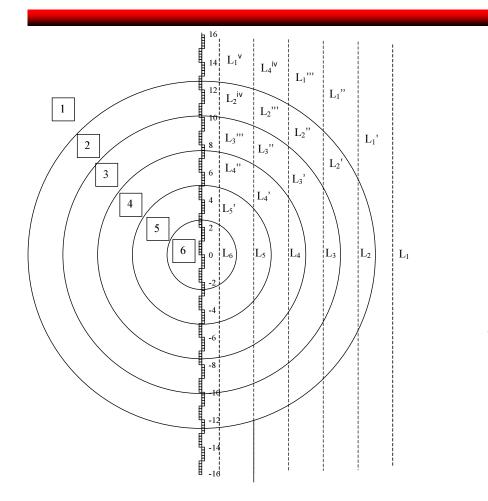
Phase II Test Environments

- Torch for combustion chemical vapor deposition (CCVD) of coatings
 - simultaneous thermometry/H₂O mole fraction
 - tomographic profiling
- Staged low-NOx (SLN) combustor
 - simultaneous thermometry at multiple locations
 - comparison with chemiluminescence
- Gel rocket motor component test (pending)
 - simultaneous thermometry/multiple species mole fraction

CCVD Torch Application: 2-laser H₂O



CCVD Torch: strategy for turbulence


Compared direct absorbance to WMS:

Direct absorbance lineshape perturbed by noise; S/N ~ 3

2f lineshape less noisy and has zero baseline; S/N ~ 35

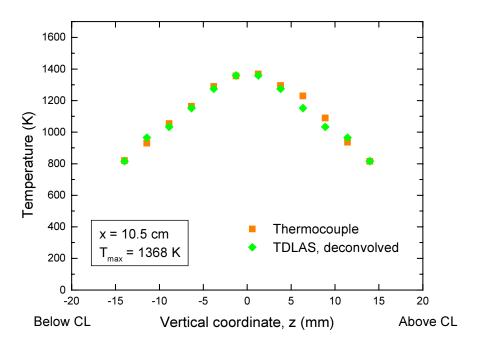
CCVD Torch: "onion peeling" tomography

For
$$i > 1$$
:
$$L_{i} = 2\sqrt{r_{i}^{2} - (r_{i} - \Delta x/2)^{2}}$$

$$L_{i}' = 2\sqrt{r_{i}^{2} - (r_{i} - 3\Delta x/2)^{2}} - L_{i+1}$$

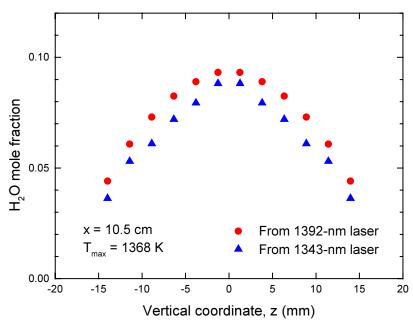
$$L_{i}'' = 2\sqrt{r_{i}^{2} - (r_{i} - 5\Delta x/2)^{2}} - L_{i+1}' - L_{i+2}$$

$$L_{i}''' = 2\sqrt{r_{i}^{2} - (r_{i} - 7\Delta x/2)^{2}} - L_{i+1}'' - L_{i+2}' - L_{i+3}$$

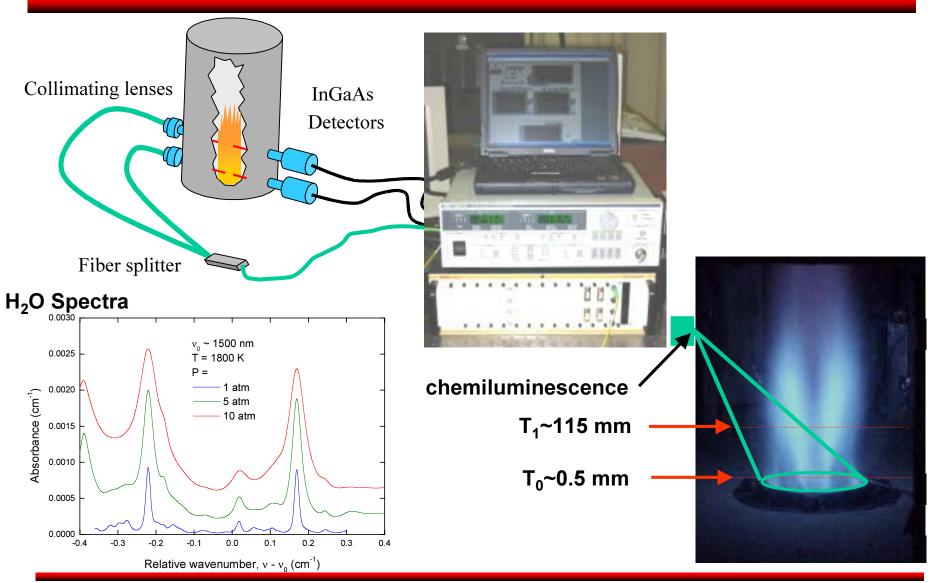

$$L_{i}^{iv} = 2\sqrt{r_{i}^{2} - (r_{i} - 9\Delta x/2)^{2}} - L_{i+1}''' - L_{i+2}'' - L_{i+3}' - L_{i+4}$$

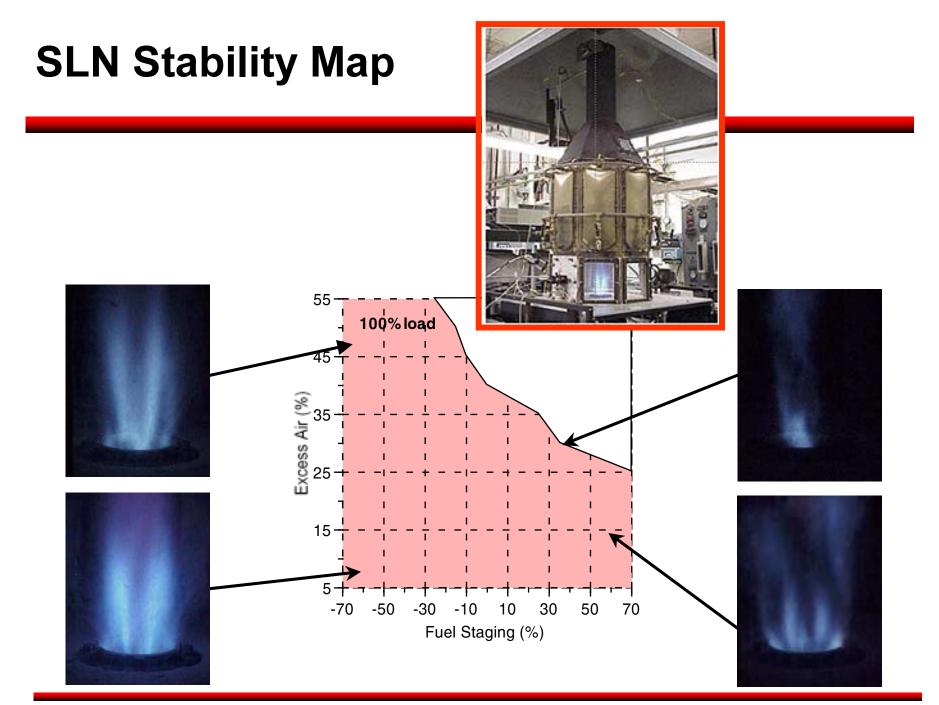
$$L_{i}^{v} = L_{i} - L_{i+1}^{iv} - L_{i+2}''' - L_{i+3}'' - L_{i+4}' - L_{i+5}$$

- The path length of each segment is calculated from the geometry.
- Starting with the outermost ring, a/L is calculated for each region.


CCVD Torch Results

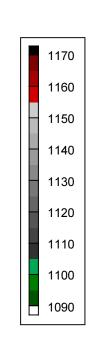
Temperature profile:

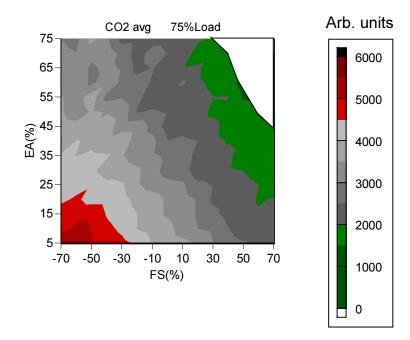

Excellent agreement (up until thermocouple failure)


H₂O mole fraction profile:

Two lines agree within 10% (some discrepancy at locations closer to nozzle)

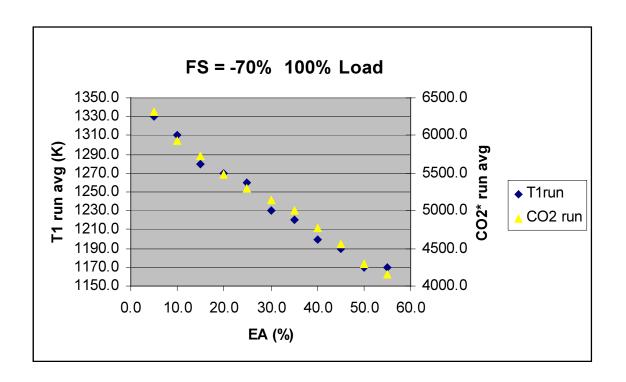
SLN Combustor: multiple probe direct absorbance with single laser TDLAS



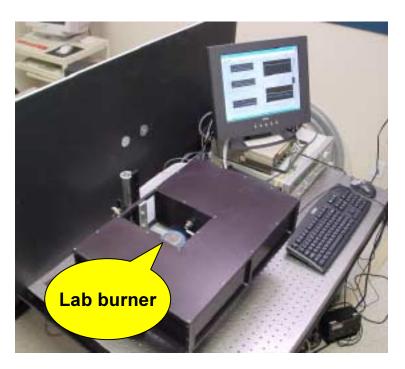

SLN Combustor Results - T0 position

TDLAS temperature:

T0 (run avg) / 75% Load 75 65 55 25 -70 -50 -30 -10 10 30 50 70 FS(%)


CO₂ chemiluminescence:

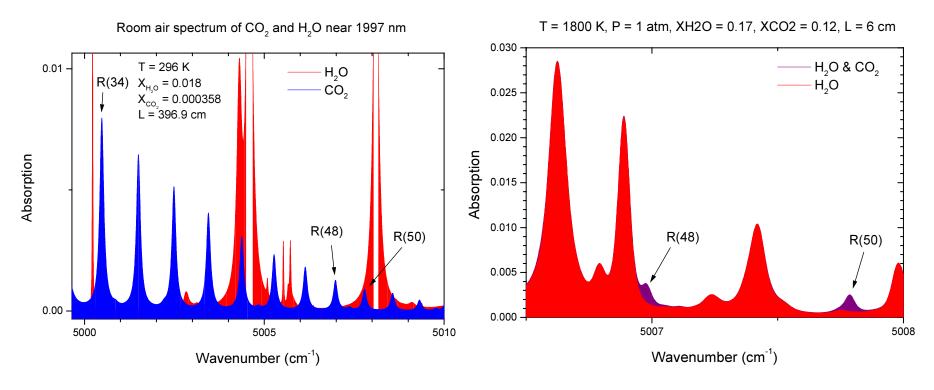
FS = fuel split: premix behavior < 0 < diffusion flame behavior


SLN Combustor Results - T1 position

TDLAS temperature and CO₂ chemiluminescence:

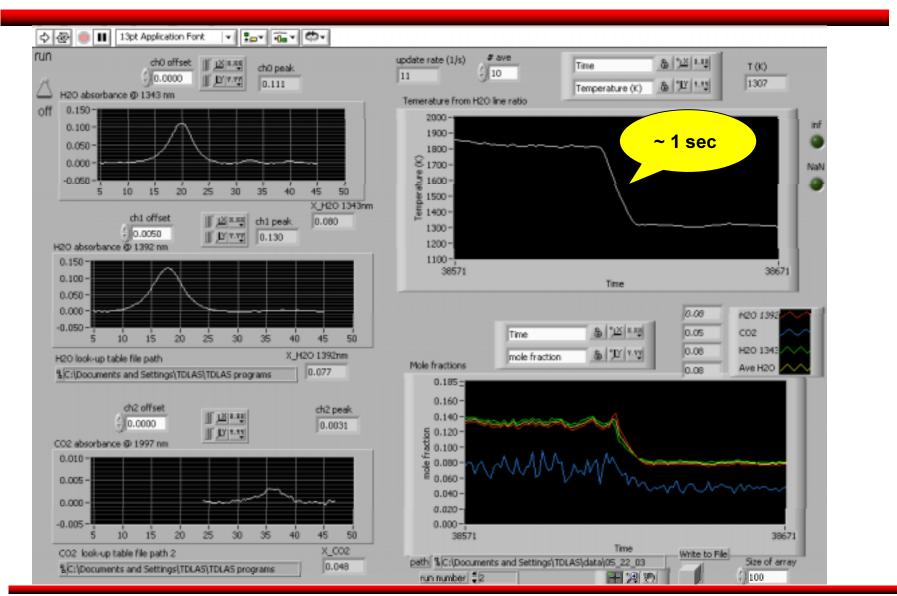
EA = excess air: air beyond stoichiometric

Gel Rocket Motor Prototype


Measurement requirements:

pathlength ~ 1 in temperature ~ 1600 K mole fraction $H_2O \sim 47\%$ mole fraction $CO_2 \sim 9\%$ time response ~ 50 μs

Short pathlength dictated choice of alternative H₂O line pair


→ CO₂ barely reachable with 1997 nm laser

Gel Rocket Motor: CO₂ Spectra

- •Ambient levels of CO₂ ~ 0.035%
- •CO₂ level in a breath of air ~ 4%

Gel Rocket Motor: lab burner tests

- Expected progress toward milestones/goals
 - solid results with Phase II prototype expected to continue
 - next test 1.5 MW boiler
 - active feedback control on CCVD torch
 - temperature + CO₂ in gel rocket motor exhaust
 - Real World Demonstration where???
- Possible barriers
 - **\$**
 - Demonstration facility identification

Conservative* Measurement Estimates

Species	Wavelength	minimum detectability with SNR = 10	Temperature range
	(nm)	(ppm)	(K)
H_2O	~1480	600	900 to 3500
CO_2	~1997	60	600 to 2000
CO	~1560	1900	400 to 2000
Temperature	1500	50 K	900 to 3500

^{*} If we were to install the prototype in your facility tomorrow

Industrial end-user involvement - CCVD application

- 1 w on-site demonstration with Phase II prototype
 - T. Jenkins, P. DeBarber, and M. Oljaca, "Diode Laser Sensor for H₂O and Temperature Applied to Measurements in an Industrial Combustion Vapor Deposition Torch," 3rd Joint Meeting of the U.S. Sections of the Combustion Institute, Chicago, IL, March 16 - 19, 2003.
 - T. Jenkins, P. DeBarber, and M. Oljaca, "A Rugged Low Cost Diode Laser Sensor for H₂O and Temperature Applied to Measurements in a Spray Flame,"AIAA Paper No. 03-0585, American Institute of Aeronautics and Astronautics, 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, January 6 - 9, 2003.
- Planned 2nd visit feedback control demo, summer 2003
- Build Phase III systems late fall 2003
 - integrate into production torch assemblies early 2004
 - jointly market as part of CCVD package begin late 2003

Univ. end-user involvement - SLN 115 kW combustor

- Several w on-site demonstrations with Phase II prototype
 - T. P. Jenkins, P. A. DeBarber, Jinyang Shen, and V. G. McDonnell, "Diode Laser Sensor for Temperature and H₂O Measurements in High Pressure Environments," submitted American Institute of Aeronautics and Astronautics, 42nd Aerospace Sciences Meeting and Exhibit, Reno, NV, January 5 - 8, 2004.
 - T.P. Jenkins, E. Scott, P.A. DeBarber, V. McDonell, and T. DeMayo, "A Rugged, Low-cost Diode Laser Sensor for H₂O and Temperature," ISA Paper No. 4005, the Instrumentation, Systems, and Automation Society 48th International Instrumentation Symposium, San Diego, CA, May 5 9, 2002.
 - T. P. Jenkins, P.A. DeBarber, E. H. Scott, T. Demayo, V.G. McDonell, "Application of a Rugged, Low-Cost Diode Laser Sensor for H₂O and Temperature to a Model Industrial Boiler," Paper No. 043, Spring Meeting of the Western State Section of the Combustion Institute, San Diego, CA, March 25 26, 2002.
- Planned testing on 1.5 MW boiler late summer 2003

- Industrial end-user involvement gel rocket motor
 - Built a 2nd Phase II prototype
 - 1 w tutoring end-user at MetroLaser
 - Scheduled 1 week installation and testing mid-summer 2003
 - Phase III commercialization discussions
 - joint publications and exhibits e.g., AIAA Reno 2004

Summary

Multichannel TDLAS for Combustion Applications

- A multichannel tunable diode laser spectroscopy system (TDLAS) affords a direct, rapid, and quantitative measure of the species concentration and temperature along a line in the probed region.
- Using fiber optics, the system is easily expanded to probe several locations simultaneously.
- The present system is being designed to simultaneously measure the concentrations of H₂O, CO₂, and CO as well as temperature.
- This is a four-channel system employing multiple diode lasers mated to a single fiber optic transmitter. Each laser diode is wavelength modulated.
- On the receiver end is a detector employing demultiplexing electronics to discriminate the four separate channels.
- The system software displays species concentration and temperature on the 100 ms timescale.

Acknowledgements

- Gideon Varga DOE Sensors and Automation
- Miki Oljaca MCT
- John Bossard CFD RC
- Pete Maly GE EERC
- Jinyang Shen, Vince McDonell and Scott Samuelsen -UC Irvine
- Ron Hanson's group Stanford